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Abstract

This paper presents an analytic solution for the stress concentrations within a spherically isotropic\ elastic
sphere of radius R subject to diametral point load strength test[ The method of solution uses the displacement
potential approach together with the FourierÐLegendre expansion for the boundary loads[ For the case of
isotropic sphere\ our solution reduces to the solution by Hiramatsu and Oka "0855# and agrees well with
the published experimental observations by Frocht and Guernsey "0842#[ A zone of higher tensile stress
concentration is developed near the point loads\ and the di}erence between this maximum tensile stress and
the uniform tensile stress in the central part of the sphere increases with E:E? "where E and E? are the
Young|s moduli governing axial deformations along directions parallel and normal to the planes of isotropy\
respectively#\ G?:G "where G and G? are the moduli governing shear deformations in the planes of isotropy
and the planes parallel to the radial direction#\ and n¹:n? "where n¹ and n? are the Poisson|s ratios characterizing
transverse reduction in the planes of isotropy under tension in the same plane and under radial tension\
respectively#[ This stress di}erence\ in general\ decreases with the size of loading area and the Poisson|s
ratio[ Þ 0888 Elsevier Science Ltd[ All rights reserved
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0[ Introduction

Point Load Strength Test "PLST# is a convenient and inexpensive method for rock classi_cation
and rock strength estimation "e[g[ Broch and Franklin\ 0861^ Guidicini et al[\ 0862^ Bieniawski\
0863#[ The required apparatus for PLST is light and portable "Boisen\ 0866#[ The point load
strength test can be applied to rock cores "either axially or diametrically#\ to spheres\ or to irregular
lumps as shown in Fig[ 0[ The testing procedure has been standardized by the International Society
for Rock Mechanics "ISRM\ 0874#[ In addition to rock testing\ PLST has also be applied to
estimate both tensile and compressive strengths of concrete "Robins\ 0879^ Richardson\ 0878# and
reinforced concrete "Robins and Austin\ 0874#[
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Fig[ 0[ Test specimens used for PLST " from the left#] sphere\ cylinder under axial point loads\ irregular lump\ cylinder
under diametral point loads[

Extensive experimental studies have been done on PLST "see the review by Chau and Wong\
0885#\ but there are relatively few theoretical studies for PLST[ Analytical studies for PLST include
the analyses of isotropic spheres subject to a pair of diametrical point loads by Hiramatsu and
Oka "0855#\ _nite cylinders subject to axial point loads by Wijk "0867# and Chau and Wong
"0885#\ and _nite cylinders subject to diametral point loads by Wijk "0879# and Chau "0887a#[

All of these analyses are restricted to isotropic solids\ there is no analytic solution for the PLST
for anisotropic solids[ However\ in reality most of the natural rocks\ are\ to certain extent\
anisotropic in nature[ PLST has also been commonly applied in testing the strength of anisotropic
rocks "e[g[ Hassani et al[\ 0879^ Lajtai\ 0879^ Read et al[ 0879^ Greminger\ 0871^ Forster\ 0872^
Broch\ 0872#[

Therefore\ in this paper we investigate the e}ect of material anisotropy on the tensile stress
concentration within rock specimens subject to PLST by considering the simplest problem] a
spherically isotropic elastic sphere subject to the diametral PLST[ The solution to be presented
here can be considered as an extension of the classical solution for isotropic spheres obtained by
Hiramatsu and Oka "0855#[ Spherically isotropic solid\ which was _rst introduced by Saint!Venant
in 0754 "see the historical account by Love\ 0833#\ is the simplest type of anisotropic solids and
contains _ve independent material constants[ The diametral point loads are modeled by a uniform
distribution of radial stress applied on two _nite regions of the spherical surface\ which is further
expanded in FourierÐLegendre series as proposed by Hiramatsu and Oka "0855#[

Although most of the rock specimens available for PLST are either cylindrical "i[e[ rock cores#
or irregular "i[e[ rock lumps#\ solution of the tensile stress concentration in spheres under diametral
point loads has been found very meaningful for the PLSTs[ It provides not only a theoretical basis
for the testing of irregular lumps of rocks "Hiramatsu and Oka\ 0855#\ but also an upper bound
of the tensile stress concentration within a cylindrical specimen under the diametral point load test
"e[g[ see Wijk\ 0879#[ More speci_cally\ Wijk "0879# obtained an approximation for the tensile
stress concentration at the center of a cylinder under diametral point loads\ which is found
intermediate between the solutions of the same problem for a circular plate and for a sphere[ Then\
the tensile stress distribution along the diameter of a cylinder under diametral PLST can be
approximated by interpolating the solutions for circular pates given by Wijk "0867# and for
spheres given by Hiramatsu and Oka "0855# "see for example Fig[ 1 of Wijk\ 0879#[ Therefore\ the
solution for spheres does shed light on the stress analysis of the diametral PLST for cylindrical
rock cores[
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The compression of isotropic spheres by either force or displacement control is one of the most
fundamental problems in the mathematical theory of elasticity and has been considered by various
authors[ Sternberg and Rosenthal "0841# _rst solved the problems of isotropic spheres under
concentrated diametral loads by using the Boussinesq stress!function in dipolar coordinates\ and
their solutions have been veri_ed by comparison to the experiments by Frocht and Guernsey
"0842#[ When the diametral point loads are distributed over two _nite areas on the spherical
surface\ the problem was solved by Hiramatsu and Oka "0855#\ and the analysis was motivated by
the PLST for irregular lumps[ Experimental and stress analyses for large deformations of spheres
compressed between two rigid blocks have been done by Frocht and Guernsey "0842#\ Durelli and
Daniel "0850#\ Durelli and Chen "0862#\ and Chen and Durelli "0862#\ Tatara "0880# and Tatara
et al[ "0880#[ When the loads are transferred to the elastic spheres through displacement boundary
conditions\ the problem was analyzed by Abramian et al[ "0853#[ However\ all of these analyses
are restricted to isotropic spheres\ no stress analysis has been done on anisotropic spheres under
diametral point loads[

Actually\ except the theoretical analyses by Nowinski "0848#\ Eason "0851#\ Chen "0855#\ Hata
"0882#\ Ding and Ren "0880# and Chau "0884\ 0887b# for spherically isotropic spheres\ not many
analytical solutions exist for spherically isotropic materials or spheres[

The method of solutions used here follows the general theory for spherically isotropic solids
proposed recently by Ding and Ren "0880#\ which is modi_ed from the general theory by Hu
"0843#[ In particular\ the displacement functions proposed by Hu "0843# will be applied to the
equations of equilibrium\ then a change of variables proposed by Ding and Ren "0880# is used
such that closed!form solutions for the roots of the characteristic equation of the governing
equations can be found[ Displacement functions are expressed in terms of spherical harmonics\
and in turn all stress components can also be expressed in terms of spherical harmonics[ To obtain
the _nal solutions\ applied loads on the spherical surface are expanded in terms of FourierÐ
Legendre series "as employed by Hiramatsu and Oka\ 0855# and match with the boundary values
of the normal stresses of the spheres[ Finally\ a closed form solution can be obtained for the stress
concentration[ As expected\ the isotropic limit of our solution recovers the classical solution by
Hiramatsu and Oka "0855#\ and compares well with the experimental observations obtained by
Frocht and Guernsey "0842# using the method of photoelasticity[

In real PLST\ the diametral point loads are applied to the rock specimens through steel cones
with spherical heads "e[g[ ISRM\ 0874#[ Therefore\ the actual boundary conditions of the applied
loads should more realistically be modeled by contact between the spherical rock and the steel
cone\ as proposed by Chau "0887a#[ It is also relevant to mention here that the contact problem
between two identical transversely isotropic spheres has been solved by Keer and Mowry "0868#[
However\ in order to recover the classical solution by Hiramatsu and Oka "0855# and to avoid
more tedious calculations\ we\ by following Hiramatsu and Oka "0855#\ model the applied load
by assuming a uniform normal stress applied over two opposite _nite patches on the sphere[ The
actual contact problem between the steel cones and the anisotropic rock specimen and the study
on inelastic crushing of the rock at the contact are complicated problems and out of the scope of
the present study[ We refer to Zhang et al[ "0889# and Shah and Wong "0885\ 0886# for some
recent developments[ The main focus here will be on the e}ect of material anisotropy on the tensile
stress concentration within the spherical rock specimen[
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Fig[ 1[ The spherical polar coordinate system used[

1[ Governing equations

1[0[ Hooke|s law

Consider a spherical polar coordinate system "r\ u\ 8# with the origin locating at the center of
the sphere\ as shown in Fig[ 1[ The spherical rock specimen is assumed to be linear elastic and
spherically isotropic\ and the stress and strain components are related by the following generalized
Hooke|s law
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where a � u\ 8[ The Cauchy stress tensor is denoted by s and the strain tensor by o[ Physically\ E
and E? are the Young|s moduli governing axial deformations on the planes of isotropy "i[e[ any
tangential plane on a spherical surface drawn from the origin# and along direction perpendicular
to it "i[e[ the radial direction#\ respectively[ The Poisson|s ratios n¹ and n? characterize transverse
reduction in the planes of isotropy under tension in the same plane and under radial tension\
respectively[ The shear modulus G? governs the shear deformation of on the planes with unit
normals perpendicular to the radial direction[

In order to make our Hooke|s law compatible to others "e[g[ Hu\ 0843^ Ding and Ren\ 0880#\
"0# is inverted to give

suu � "1A55¦A01#ouu¦A01o88¦A02orr

s88 � A01ouu¦"1A55¦A01#o88¦A02orr
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where
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For small deformation and small strain\ the relations between the strain and displacement com!
ponents in spherical polar coordinate are expressed as
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where uu\ u8 and ur are displacements in u\ 8 and r directions\ respectively[

1[1[ Equilibrium equations

For the present problem of spheres under diametral compression\ body forces can be neglected[
Hence\ the equations of equilibrium can be simpli_ed to

1srr

1r
¦

0
r sin u

1sr8

18
¦

0
r

1sru

1u
¦

1srr−suu−s88¦sru cot u

r
� 9

1sr8

1r
¦

0
r sin u

1s88

18
¦

0
r

1su8

1u
¦

2sr8¦1su8 cot u

r
� 9

1sru

1r
¦

0
r sin u

1su8

18
¦

0
r

1suu

1u
¦

2sru¦"suu−s88# cot u

r
� 9 "4#

Substituting "1# and "3# into "4#\ we obtain
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where
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Fig[ 2[ A sphere under PLST is modeled by uniform radial stress applied over two small spherical areas subtending an
angle of 1u9[
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1[2[ Boundary conditions

For the diametral compression of spheres of radius R\ the pair of point forces of magnitude F
are modeled by uniform radial stress p applied over two opposite spherical areas "on r � R# which
subtend an angle of 1u9 from the origin symmetrically with respect to the z!axis\ as shown in Fig[
2[ All other tractions are zero on r � R[ Mathematically\ this boundary condition can be expressed
as]

srr � 6
−p for 9 ¾ u ¾ u9 and p−u9 ¾ u ¾ p

9 for u9 ³ u ³ p−u9

"8#

sr8 � sru � 9 "09#

on r � R\ where p can be expressed in terms of F\ R and u9 as "Hiramatsu and Oka\ 0855#]

p � F:ð1pR1"0−cos u9#Ł "00#

Now\ our problem is to solve the equilibrium eqns "5# subject to boundary conditions "8# and "09#[
The technique of displacement function and the method of solutions are considered next[
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2[ Displacement functions

It was proposed by Hu "0843# that the displacements under consideration can be resolved into
two parts] the _rst displacement _eld corresponds to both the radial displacement and the dilatation
equal to zero^ and the second _eld corresponds to the radial component of the curl of the
displacements equal to zero[ More speci_cally\ the displacements are decomposed into "Hu\ 0843#]
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where c and G are displacement functions[ Substitution of "01# into "5# leads to the following
partial di}erential equations
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in which A and B are functions expressed in terms of w\ G\ and c
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a � A01¦1A55\ b � A33−A55\ d � A02¦A33
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As shown in Section V of Hu "0843#\ without loss of generality\ both A and B can be set to zero^
that is\

A � B � 9 "08#

The proof of this result is outlined brie~y in the Appendix[ In order to obtain a more tractable
form of the solution for "02# and "08#\ the following change of variables similar to those proposed
by Ding and Ren "0880# is introduced
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where Z\ F\ and H are new displacement functions in terms of the new dimensionless radial variable
h\ and R is the radius of the sphere[ When R � 0\ the change of variables introduced in "19# reduces
to those of Ding and Ren "0880#\ but with the introduction of R into "19# no ambiguity in
dimension will be resulted\ as compared to the analysis by Ding and Ren "0880#[ The main reason
for introducing the change of variables in "19# is that\ as it will be shown later in this paper\ the
roots for the characteristic equation for the governing equations can be obtained explicitly\ as
compared to the implicit form given in eqn "22# of Hu "0843#[

Substitution of "19# into "05#\ "06#\ "08# and "02# leads to the following three partial di}erential
equations for Z\ F\ and H]
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To uncouple the governing equations for F and H\ "11# and "12#\ another new displacement
function f is introduced such that
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Then\ "11# is satis_ed identically by "13# and "14#[ Substitution of "13# and "14# into "12# yields a
single governing equation for f\ which can be further simpli_ed to the following form if another
new potential F is introduced
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Subsequently\ only two displacement potentials Z and F remain and satisfy "10# and "15#\ respec!
tively[ Expressed in terms of these displacement functions\ the displacement components become
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Substitution of "18# into "3# and "1# yields the strain and stress components in terms of Z and F[
The attractive feature of this displacement function approach is that our governing equations are
reduced to two uncoupled partial di}erential equations\ which are much easier to solve than
coupled partial di}erential equations[ But\ as a tradeo} the governing equation "15# is of order
higher than that of the equations of equilibrium[ The general solutions for Z and F are discussed
next[

3[ General solutions for the displacement functions

Motivated by the stress analysis for isotropic spheres\ the following solution form in terms of
spherical harmonics is sought for the displacement function Z
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where Dn and ln are unknown constants to be determined and Sn"u\ 8# is the spherical harmonics
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Substitution of "29# into "10# leads to the following characteristic equation for ln
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The two characteristic roots of "21# are
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Consequently\ if ln0 � ln1\ the displacement function Z de_ned in "18# becomes

Z � s
�

n�9

"Dn0 eln0h¦Dn1 eln1h#Sn"u\ 8# "24#

where Dn0 and Dn1 are unknown constants to be determined[ Similarly\ the following form is
sought for the displacement function F
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F � s
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Cn emnhSn"u\ 8# "25#

Substitution of "25# into "15# yields the following characteristic equation for mn
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The four characteristic roots for "26# can be solved analytically as
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where

wn � 0−3ðPn¦z"P1
n−Qn#Ł\ jn � 0−3ðPn−z"P1

n−Qn#Ł "39#

The second subscript i "i � 0\ 1\ 2\ 3# of mni in "28# indicates the root number[ When the roots for
mni are distinct\ the general solution form for F becomes

F � s
�

n�9

"Cn0 emn0h¦Cn1 emn1h¦Cn2 emn2h¦Cn3 emn3h#Sn"u\ 8# "30#

where Cn0\ Cn1\ Cn2 and Cn3 are constants to be determined by the boundary conditions of the
sphere[ Since the exact forms for Z and F depend on the types of the characteristic roots for mn

and ln\ it is necessary to discuss the possible root types for them[

4[ Characteristic roots for solid spheres

Physically\ all components of displacement\ strain and stress must be real\ therefore the dis!
placement functions Z and F must be real functions of the coordinate r\ u and 8[ For problems
involving solid spheres\ it is necessary to ensure that all stress components remain bounded as the
origin is approached[ Substitution of "24# and "30# into "18#\ "3# and "1# leads to the stress _eld
inside the sphere\ which is found to be proportional to the power Re ðmniŁ−0 "i � 0\ 1\ 2\ 3# and
Re ðlniŁ−0 "i � 0\ 1# of r\ where Re ð Ł means the real part of ð Ł[ Since all stress components have
to be _nite at r � 9\ all r terms with power Re ðmniŁ ³ 0 or power Re ðlniŁ ³ 0 should be discarded
in view of this condition of boundedness[

It can be shown that the three characteristic roots] mni\ i � 2\ 3 and ln1 will lead to unbounded
conditions at the origin of the sphere\ regardless of the value of n and the elastic properties[ That
is\

Re ðln1Ł ³ 0\ Re ðmn2Ł ³ 0\ Re ðmn3Ł ³ 0 "31#

To see the validity of the _rst of "31#\ it can be noted that if 0¦3Mn × 9\ ln1 is real and the real
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part of ln1 is always less than −0:1 "i[e[ Re ðln1Ł ³ 0#^ if 0¦3Mn ¾ 9\ the real part equal exactly
−0:1 "i[e[ Re ðln1Ł ³ 0#[ Consequently\ we have Re ðln1Ł ³ 0 independent of the value of n[ For
the validity of the second and third of "31#\ the following argument can be applied[ If
P1

n−Qn − 9\ we have three possible scenarios] for wn and jn − 9\ both mn2 and mn3 are real and the
real parts of them are always less than or equal to −0:1^ for wn and jn ³ 9\ both mn2 and mn3 are
complex and the real parts of them equal −0:1^ and\ _nally\ for wn ³ 9 and jn × 9\ mn2 is complex
with the real part equal to −0:1 and mn3 is real and less than −0:1[ If P1

n−Qn ³ 9\ we can let
jn � A eiu with the imaginary part of jn being 3z=P1

n−Qn =\ which is always positive[ This implies
that 9 ³ u ³ p[ Thus\ j0:1

n becomes A0:1 eiu:1 with 9 ³ u:1 ³ p:1^ hence\ we must have
Re ðj0:1

n Ł × 9[ Consequently\ if P1
n−Qn ³ 9\ we have Re ðmn2Ł ³ 0 as shown in "28#[ Since for

P1
n−Qn ³ 9\ wn and jn are complex conjugates\ so Re ðw0:1

n Ł � Re ðj0:1
n Ł × 9\ hence Re ðmn3Ł ³ −0:1[

Therefore\ the proof for the validity of "31# is demonstrated[ Thus\ to ensure the stress _eld to be
_nite at r � 9\ we have to set the constants for all terms corresponding to ln1\ mn2 and mn3 to zero[

The solution forms for F and Z now depend on the types of the possible roots for the remaining
characteristic values ln0\ mn0 and mn1[ We further note here that our problem is axisymmetric with
respect to the angle 8[ Thus\ the spherical harmonics reduces to

Sn"u\ 8# � Pn"cos u# "32#

where Pn"cos u# is the Legendre Polynomials "e[g[ Abramowitz and Stegun\ 0854#[ Therefore\ all
derivatives with respect to 8 must be zero^ consequently\ it can be shown that the displacement Z
is identically zero[ To see this\ we _rst express\ by using "0#\ "3# and "18#\ the shear stress sr8 as

sr8 � G? 6
11Z
1r 1u

−
0
r

1Z
1u7 "33#

Since only one characteristic root remains for Z "i[e[ ln0#\ the boundary conditions "09# require
that Z 0 9[

For the possible solution forms for F\ there are six possible scenarios for the types of roots for
mn0 and mn1] "I# when P1

n−Qn × 9\ wn × 9\ jn × 9\ mn0 and mn1 are real unequal roots^ "II# when
P1

n−Qn ³ 9\ mn0 and mn1 are complex conjugates^ "III# when P1
n−Qn × 9\ wn ³ 9\ jn × 9\ mn0 is

complex and mn1 is real^ "IV# when P1
n−Qn × 9\ wn ³ 9\ jn ³ 9\ mn0 and mn1 are complex but not

conjugates "V# when P1
n−Qn � 9\ wn � jn × 9\ mn0 � mn1 are real "double real roots#^ and "VI#

when P1
n−Qn � 9\ wn � jn ³ 9\ mn0 � mn1 are complex "double complex roots#[ However\ for Case

"III# it is straightforward to see that Re ðmn0Ł � −0:1 ³ 0\ thus the corresponding stress does not
converge at r � 9[ Consequently\ this possible scenario is ruled out[ Similarly\ the solution form
for Case "IV# can also be ruled out as it can show that Re ðmn0Ł � Re ðmn1Ł � −0:1 ³ 0[ For Case
"VI#\ it can be shown that Re ðmn0Ł � Reðmn1Ł � −0:1 ³ 0\ thus this possibility is again ruled out[
For Cases "V#\ it is required that P1

n−Qn � 9\ which is unlikely to be satis_ed by most real
materials for any particular n[ Therefore\ these possibilities will not be considered in this study[
The solutions for the remaining two possible scenarios are]

4[0[ Case I] Two real roots

For any spherically isotropic material with a _xed value of n\ if we _nd that P1
n−Qn × 9\ wn × 9\

jn × 9\ then mn0 and mn1 are real unequal roots[ If mn0 and mn1 − 0\ the corresponding solution is]
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Fn �"Cn0 emn0h¦Cn1 emn1h#Pn"cos u# "34#

where Cn0 and Cn1 are real constants[ If mn0 and mn1 ³ 0\ no converging solution can be found for
solid spheres[

4[1[ Case II] Two complex conju`ate roots

For a particular spherically isotropic material with a speci_c n\ if P1
n−Qn ³ 9\ mn0 and mn1 are

complex conjugates[ If Re ðmn0Ł and Re ðmn1Ł − 0\ the corresponding solution is]

Fn �"Dn emnh¦DÞn em¹nh#Pn"cos u# "35#

where Dn � Rn¦iIn is a complex constant and the superimposed bar denotes the complex conjugate
and mn becomes

mn �
−0¦z0−3Pn−i3z=P1

n−Qn =
1

� xn¦iyn[ "36#

Therefore\ the general solution for F can now be expressed as]

F � s
�

n�9

Fn "37#

where Fn is de_ned in either "34# or "35#\ depending on the type of roots for mn[

5[ The method of solutions

5[0[ The `eneral solutions of stresses

Substitution of the displacement potential into "18#\ "3# and "1# yields the following expressions
for the stress components]

suu � −
0
R

s
m

s
1

i�0

Cmir
mmi−0 6ðA01m"m¦0#Gmi¦"A02mmi¦1A01¦1A55#LmiŁ

×Pm"cos u#−1A55Gmi

11Pm"cos u#

1u1 7
¦

0
R

s
n

rxn−06Pn"cos u#ðV0"Rn\ In# cos"yn ln r#¦V0"−In\ Rn# sin"yn ln r#Ł

−
11Pn"cos u#

1u1
ðV1"Rn\ In# cos"yn ln r#¦V1"−In\ Rn# sin"yn ln r#Ł7 "38#

sru � −
0
R

s
m

s
1

i�0 6A33Cmir
mmi−0 ð"0−mmi#Gmi¦LmiŁ

1Pn"cos u#
1u 7
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¦
0
R

s
n

rxn−0 ðP"Rn\ In# cos"yn ln r#¦P"−In\ Rn# sin"yn ln r#Ł
1Pn"cos u#

1u
"49#

where r � r:R as the normalized radial coordinate[ Note that the _rst summation for m is done
over all Case I "i[e[ two real roots for mn# while the second summation for n is done over all Case
II "i[e[ two complex conjugates for mn#[ The following functions have been used in these expressions]

Gmi � Gmi"mmi# � dmmi¦1"a¦b# "40#

Lmi � Gmi"mmi# � hmmi"mmi¦0#−1b−am"m¦0# "41#

VI "Rn\ In# � 3A33"A01¦A55#ðIn"1xn¦0#yn−Rn"x1
n−y1

n¦xn#Ł

¦A01n"n¦0#ð1d"Inyn−xnRn#−3"a¦b#RnŁ

¦1A33A02 ð"xnIn¦ynRn#"1xn¦0#yn−"xnRn−ynIn#"x1
n−y1

n¦xn#Ł

¦1ð1b¦an"n¦0#Łð1"A01¦A55#Rn¦A02"xnRn−Inyn#Ł "42#

V1"Rn\ In# � 1A55 ð1d"Inyn−xnRn#−3"a¦b#RnŁ "43#

P"Rn\ In# � A33"Inyn ð1d"0−1xn#−3"a¦b#Ł¦Rn ð1d"x1
n−y1

n−xn#¦3"a¦b#"xn−0#Ł#

−1A1
33 ðRn"x1

n−y1
n¦xn#−In"1xn¦0#ynŁ¦1A33 ð1b¦an"n¦0#ŁRn "44#

The expression for srr can be obtained from "38# by replacing A01\ "1A55#\ and A02 by A02\ 9 and
A22\ respectively^ while the expression for s88 can be obtained from "38# by replacing A01 and 1A55

by "1A55¦A01# and "−1A55#\ respectively[

5[1[ Determination of unknown coef_cients

In order to determine the unknown coe.cients in these expressions\ the FourierÐLegendre
expansion "e[g[ see Brown and Churchill\ 0882# adopted by Hiramatsu and Oka "0855# is employed
here to rewrite "8# as

srr �"cos u9−0#p¦ s
�

n�0

E1nP1n"cos u# "45#

where

E1n �
3n¦0
1n¦0

ðcos u9P1n"cos u9#−P1n−0"cos u9#Łp "46#

The coe.cients for this FourierÐLegendre expansion of the applied normal stress can be used to
match with those from the internal stress _eld when the boundary values are considered[

By combining the shear traction free condition given in the second of "09# and "49#\ the following
relations between Cm0 and Cm1 and between In and Rn are established]

Cm0 � LmCm1\ In � KnRn "47#

where
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Lm � −
"0−mm1#Gm1¦Lm1

"0−mm0#Gm0¦Lm0

\ Kn �
P"0\ 9#

P"9\−0#
"48#

Since srr\ suu and s88 are even functions of u while sru is the odd function of u\ we can replace {n|
by {1n| and {m| by {1m| in all of the above expressions[ The expression of srr on r � R must match
with "45# and leads to the following solutions for C1m\1 and R1n "note that to avoid confusion the
subscript 1m and 1 are separated by a {comma|#]

C1m\1 � −
E1mR
J1m

\ R1n �
E1nR
H1n

"59#

where R is again the radius of the sphere

J1m � L1m ð1A02m"1m¦0#G1m\0¦"1A02¦A22m1m\0#L1m\0Ł

¦1A02m"1m¦0#G1m\1¦"1A02¦A22m1m\1#L1m\1 "50#

H1n � 3A33A02 ðK1n"1x1n¦0#y1n−"x1
1n−y1

1n¦x1n#Ł

¦1A02n"1n¦0#ð1d"K1ny1n−x1n#−3"a¦b#Ł

¦1A33A22 ð"x1nK1n¦y1n#"1x1n¦0#y1n−"x1n−y1nK1n#"x1
1n−y1

1n¦x1n#Ł

¦3ðb¦an"1n¦0#Łð1A02¦A22"x1n−K1ny1n#Ł "51#

5[2[ Final solutions for stresses

By now\ all unknown constants have been obtained\ and substitution of "47# and "59# into "38#
and "49# yields the _nal expressions of the stress components as

suu � s
m 6ðL1mrm1m\0−0 ð1A01m"1m¦0#G1m\0¦"A02m1m\0¦1A01¦1A55#L1m\0Ł

¦ð1A01m"1m¦0#G1m\1¦"A02m1m\1¦1A01¦1A55#L1m\1Łrm1m\1−0ŁP1m"cos u#

−1A55 ðrm1m\0−0G1m\0L1m¦rm1m\1−0G1m\1Ł
11P1m"cos u#

1u1 7×
E1m

J1m

¦s
n

rx1n−0 6P1n"cos u#ðV0"0\ K1n# cos"y1n ln r#¦V0"−K1n\ 0# sin"y1n ln r#Ł

−
11P1n"cos u#

1u1
ðV1"0\ K1n# cos"y1n ln r#¦V1"−K1n\ 0# sin"y1n ln r#Ł7×

E1n

H1n

"52#

sru � s
m

"A33L1mrm1m\0−0 ð"0−m1m\0#G1m\0¦L1m\0Ł

¦A33r
m1m\1−0 ð"0−m1m\1#G1m\1¦L1m\1Ł#

1P1m"cos u#
1u

×
E1m

J1m
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¦s
n

rx1n−0 ðP"0\ K1n# cos"y1n ln r#¦P"−K1n\ 0# sin"y1n ln r#Ł
1P1n"cos u#

1u
×

E1n

H1n

"53#

and other shear stresses are zero "i[e[ sr8 � su8 � 9#[ As mentioned previously\ the expression for
srr can be obtained from "52# by replacing {A01\ "1A55#\ A02| by {A02\ 9\ A22|\ respectively^ while
those for s88 can be obtained from "52# by replacing {A01\ "1A55#| by {"1A55¦A01#\ "−1A55#|\
respectively[

In the isotropic case\ the coe.cients in the generalized Hooke|s law take the values

E? � E\ n¹ � n? � n\ G? �
E

1"0¦n#
"54#

Substitution of "54# into "52# and "53#\ the present solution reduces to the analytic solution by
Hiramatsu and Oka "0855# for isotropic spheres subject to a pair of diametrical pointed loads\
which has been found providing the theoretical basis in studying PLST for isotropic rock cores
and lumps[

6[ Numerical results and discussion

6[0[ Stresses in isotropic spheres and comparisons with experiments

Hiramatsu and Oka "0855# concluded\ by summing a _nite number of terms in their analytic
solution of in_nite series\ that the tensile stress induced along the axis through which the point
loads are applied is fairly uniform "e[g[ see Fig[ 4 of their paper#[ However\ a more careful study
of Hiramatsu and Oka|s "0855# solution by Wijk "0867# revealed that the maximum tensile stress
may rise to double of the {plateau| value in the central part of the specimen for n � 0:2 and the
tensile stress distribution is not uniform "see Fig[ 2 of Wijk\ 0867#[ This observation provides a
means to check the accuracy of the present numerical results[ In particular\ the stresses for the
case of isotropic spheres with n � 0:2 and u9 � 2> were calculated\ and our results coincide with
those given in Fig[ 1 of Wijk "0867#\ as expected[ To further investigate the _nding by Wijk "0867#\
Fig[ 3 plots the variations of the normalized radial and tangential stresses\ 1pR1srr:F and 1pR1suu:F\
vs the radial distance r:R along the z!axis for various values of Poisson|s ratio n"�n? � n¹# for
u9 � 2>[ By following the usual sign convention of continuum mechanics\ tension is plotted as
positive[ For small Poisson|s ratio "say n � 9[0#\ a {local peak| near r:R � 9[8 appears in the tensile
stress concentration which is about ten times larger than those observed at the central part of the
specimen[ If the tensile strength or point load strength index "PLSI# is proportional to the maximum
tensile stress within the specimen at the instant of failure\ Fig[ 3 indicates that the PLSI is extremely
sensitive to the actual value of the Poisson|s ratio of the rock[ However\ the tensile stress at the
central {plateau| and the radial compression is relatively insensitive to the change in Poisson|s
ratio[

Figure 4 illustrates the e}ect of the size of the contact zone\ u9\ on the magnitude of the local
peak of tensile stress for n � n? � n¹ � 9[0[ Except for the varying u9\ the plot is the same as those
given in Fig 3[ It is clear that the deviation of the maximum tension from the {plateau| value at the
central portion of the sphere increases drastically with the decrease of u9\ especially for u9 ³ 4>[
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Fig[ 3[ Normalized stresses 1pR1srr:F and 1pR1suu:F vs the normalized radial coordinate r:R "along z!axis or with u � 9>#
for various values of Poisson|s ratio of isotropic spheres "i[e[ n¹ � n? � n# for u9 � 2>[

For example\ the increment of the maximum tensile stress rises about 079) as u9 decreases from
4>Ð2>[ For large contact zone "say u9 × 6>#\ the e}ect of the local tensile zone is not signi_cant[

Since for the case of anisotropic spheres\ there is\ to the best of our knowledge\ no experimental
measurement on the stress concentration within a sphere under diametral point loads[ Figures 5Ð
6 compare the predictions by our solution for isotropic spheres to the experimental observations
by Frocht and Guernsey "0842#\ as well as the theoretical prediction by Sternberg and Rosenthal
"0841#[ More speci_cally\ Fig[ 5 plots the compressive hoop stress vs the radius r:R along u � p:1
for an isotropic sphere with n � 9[37 and u9 � 4>[ Our prediction seems to agree better with the
experiments than those by Sternberg and Rosenthal "0841#\ although both solutions agree well
with experiments[ Figure 6 plots both the radial and tangential stresses along the line between the
point loads "i[e[ along u � 9># for n � 9[37[ Since large deformation of sphere is observed in the
loaded regions in the experiment "e[g[ see Fig[ 7 of Frocht and Guernsey 0842#\ it is di.cult to
determine precisely the value of u9 in the experiments[ Therefore\ predictions have been obtained
for both u9 � 4> and u9 � 04>[ The predictions for u9 � 04> seems to agree better with experiments
when r:R × 9[4\ but both predictions and observations agree well for r:R ³ 9[4\ independent of
the values of u9[ Thus\ this plot also provides a veri_cation of our conclusion from Fig[ 4 that the
tensile stresses within the central portion of the specimen "say r:R ³ 9[4# are independent of the
choice of u9[ Although there is discrepancy near the surface of the sphere\ the agreement between
the theoretical and experimental values is remarkably good in the neighborhood of the center of
the sphere[

6[1[ For anisotropic spheres

The main contribution of the present paper is in obtaining an analytic solution for spherically
isotropic spheres under diametral point loads\ and provides an anisotropic counterpart of the
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Fig[ 4[ Normalized stresses 1pR1srr:F and 1pR1suu:F vs the normalized radial coordinate r:R "along z!axis or with u � 9>#
for various values of u9 for isotropic spheres with n¹ � 9[0[

classic solution by Hiramatsu and Oka "0855# for isotropic spheres[ Therefore\ it is essential to
investigate how the {local tensile zone| near r:R � 9[8 depends on the change in the degree of
anisotropy\ as most rocks found in nature are anisotropic[ Three parameters indicating the degree
of anisotropy are de_ned here and will be used as the control parameters in our calculations]

b �
E
E?

\ a �
n?
n¹

\ j �
A33

A55

"55#

Figure 7 plots both normalized radial and tangential stresses along the line between the center
and one of the point load for various values of modulus ratio b " from 0[9Ð0[7# with a � j � 0[9\
n¹ � 9[1 and u9 � 2>[ The maximum tensile stress at about r:R � 9[8 increases with b[ That is\ if a
sphere is sti}er against axial deformation along the tangential direction than along the radial
direction\ it is weaker in PLST "since higher tensile stress concentration is resulted and the rock
with larger b is easier to break under the same applied loads#[ In addition\ both the radial stress
and tensile stress at the center of the sphere decreases with b[ Therefore\ in contrast to the isotropic
case\ the stress concentration in anisotropic rocks is found sensitive to the value of the modulus
"or the modulus ratio#[

Figure 8 plots the variations of 1pR1srr:F and 1pR1suu:F vs the radial distance r:R along the z!
axis for various values of a"�n?:n¹# with b � 0[4\ j � 0[9\ n¹ � 9[1 and u9 � 2>[ In contrast to the
e}ect of modulus ratio\ the increase of anisotropy in terms of the changes in Poisson|s ratio along
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Fig[ 5[ The normalized tangential stress −pR1suu:F vs the horizontal axis r:R "with u � p:1# for isotropic sphere with
n¹ � 9[37[ The line with squares is the experimental result by Frocht and Guernsey "0842#\ the line with open circles is
the solution by Sternberg and Rosenthal "0841#\ and the solid line is our prediction for u9 � 4>[

Fig[ 6[ Comparisons of the present solutions and the experimental results by Frocht and Guernsey "0842# for the
normalized stresses pR1srr:F and pR1suu:F vs the normalized radial coordinate r:R "along z!axis or with u � 9># for
n¹ � n? � 9[37[ Our predictions for u9 � 4> and u9 � 04> are given in lines with circles and solid lines\ respectively\ while
the experimental results are given in lines with squares[
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Fig[ 7[ Normalized stresses 1pR1srr:F and 1pR1suu:F vs the normalized radial coordinate r:R "along z!axis or with u � 9>#
for various values of modulus ratio b "�E:E?# of anisotropic spheres with a � 0[9\ n¹ � 9[1\ j � 0[9 and u9 � 2>[

Fig[ 8[ Normalized stresses 1pR1srr:F and 1pR1suu:F vs the normalized radial coordinate r:R "along z!axis or with u � 9>#
for various values of a "�n?:n¹# for anisotropic spheres with b � 0[4\ n � 9[1\ j � 0[9 and u9 � 2>[
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Fig[ 09[ Normalized stresses 1pR1srr:F and 1pR1suu:F vs the normalized radial coordinate r:R "along z!axis or with
u � 9># for various values of j "�A33:A55# for anisotropic spheres with b � 0[9\ n¹ � 9[1\ a � 0[9 and u9 � 2>[

di}erent directions "i[e[ increasing a# actually reduces the di}erence between the local tensile peak
and the stress within the central part of the sphere[ But\ the e}ect of a on the radial stress is not
very signi_cant[

Figure 09 plots the normalized stresses vs r:R along the z!axis for various values of j"�A33:A55#
with b � 0[9\ n¹ � 9[1 and u9 � 2>[ As shown in "2#\ A33 can be interpreted as the modulus governing
shear deformation in the planes with normals perpendicular to the radial directions "i[e[ transverse
planes#\ and A55 can be interpreted as the modulus governing shear deformation in the planes of
isotropy[ The e}ect of this shear modulus ratio j is very similar to the observation in Fig[ 7 for
Young|s modulus ratio b[ That is\ if a sphere is sti}er against shear deformation in the transverse
planes than in the planes of isotropy\ the local tensile stress concentration "near r:R � 9[8# becomes
larger and\ thus\ it is weaker under PLST[ Comparing to Fig[ 7\ the e}ect of the shear modulus
ratio j is much larger than those of the Young|s modulus ratio b[ Therefore\ anisotropy in shear
modulus have greater e}ect on stress concentration than those in Young|s modulus[

7[ Conclusion

An analytic solution for the stress concentration inside a spherically isotropic sphere under
diametral point loads is obtained by employing the {displacement potential method| together
with a FourierÐLegendre expansion for the boundary applied stress[ When the isotropic limit is
considered\ the solution by Hiramatsu and Oka "0855# is recovered analytically[ It was found that
a local tensile zone near r:R � 9[8 is developed\ and such non!uniform distribution was _rst
pointed out by Wijk "0867# for isotropic spheres[ The di}erence between the local maximum and
the {plateau| value in the central portion of the sphere increases with the decrease of both the
Poisson|s ratio and the area of the loading surface[ To verify the present solution\ the experimental
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observations by Frocht and Guernsey "0842# for isotropic spheres with n � 9[37 are compared
with our predictions\ and the theory and experiment agree well[

For anisotropic spheres\ it is found that the local maximum tensile stress increase with the degree
of anisotropy in both the Young|s and shear moduli\ but decrease with the anisotropy in Poisson|s
ratio[ In particular\ if a sphere is sti}er against axial deformation along the tangential direction
than along the radial direction\ higher tensile stress concentration is observed near r:R � 9[8 and\
thus\ it is weaker in PLST[ Similarly\ if a sphere is sti}er against shear deformation in the transverse
planes than in the planes of isotropy\ the local tensile stress concentration "near r:R � 9[8# becomes
larger and this leads to a smaller PLSI "i[e[ a weaker rock#[ In contrast to the e}ect of modulus
ratio\ the increase of anisotropy in terms of the changes in Poisson|s ratio along di}erent directions
"i[e[ increasing a# actually reduces the di}erence between the local tensile peak and the stress within
the central part of the sphere[

The present solution indicates that the tensile stress along the line of the applied point loads
within the spheres is not uniform\ in contrast to the conclusion by Hiramatsu and Oka "0855#[
The non!uniformity depends on the Poisson|s ratio\ size of contact zones\ the degree of anisotropy
of the tested rocks[ In terms of further experimental veri_cation\ the local peak of the tensile zone
near r:R � 9[8 may provide a special feature for us to assess our prediction[ If experimental
technique\ such as the acoustic emission test\ can be used to identify the origin of fracture during
the point load strength test\ it is possible to see whether fracture originates at about r:R � 9[8[
Nevertheless\ further experimental and theoretical studies are recommended\ especially for aniso!
tropic rocks[
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Appendix

The proof for "08# given here follows that of Hu "0843#[ In particular\ it can be shown\ by
eliminating either A or B from "03# and "04#\ that both A and B satisfy the plane Laplacian
equation

91
0A � 91

0B � 9 "A0#

where 91
0 is de_ned in "7#[ Therefore\ any harmonic functions can be the solutions for A and B[

However\ as shown in Section V of Hu "0843#\ without loss of generality\ both A and B can be set
to zeros "i[e[ A � B � 9#[ To see this\ it should be _rst noted that the determination of uu and u8

from "01# is not unique as there is a homogeneous solution for]

0
r sin u

1c9

18
¦

0
r

1G9

1u
� 9\

0
r

1c9

1u
−

0
r sin u

1G9

18
� 9 "A1#
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Similar to the derivation of "A0#\ it is straightforward to show that both of these homogeneous
solutions\ c9 and G9\ satisfy the plane Laplacian equation

91
0c9 � 91

0G9 � 9 "A2#

Thus\ the complete solution for c9 and G9 are harmonic functions[ Alternatively\ if a change of
variables j � ln tan"u:1# is introduced as suggested by Hu "0843#\ the solutions can be expressed
in the form of complex function as c9¦iG9 � f"j¦i8\ r#\ where f is an arbitrary analytic function
of the complex variable j¦i8[ Thus\ any arbitrary analytic functions c9 and G9 can be added to
c and G without loss of generality[

Following the same procedure\ one can show that the general solution for A and B given in "A0#
can be written as A¦iB � F"j¦i8\ r#\ where F is again any arbitrary analytic function[ Without
loss of generality\ functions c9 and G9 can be now added to c and G\ then the resultant uu and u8

are substituted into "5#[ It can be shown that if the analytic function of c9 and G9 are chosen such
that

1b

r1
f−h

11f

1r1
� −iF"j¦i8\ r# "A3#

then the A9 and B9 corresponds to c9 and G9 satisfy A9¦iB9 � −F"j¦i8\ r#[ Therefore\ F\ or in
turn both A and B\ can always be adjusted to zero by imposing homogeneous analytic solution f[
Consequently\ we can always set A and B to zero without loss of generality[
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